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In this paper, we study the controllability of a four-dimensional integrable Hamiltonian system that arises as
a low-mode truncation of the nonlinear Schrödinger equation �Bishop et al., Phys. Lett. A 144, 17 �1990��. The
controller targets a solution of the uncontrolled dynamics. We show that in the limit of small control coupling,
a Takens-Bogdanov bifurcation occurs at the control target. These results support our earlier claim that Takens-
Bogdanov bifurcations will generically occur when dissipative control is applied to integrable Hamiltonian
sytems. The presence of the Takens-Bogdanov bifurcation causes the control to be extremely sensitive to noise.
Here, we implement an algorithm first developed in Kulp and Tracy �Phys. Rev. E 70, 016205 �2004�� to
extract a subcritical noise threshold for the four-dimensional system.
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I. INTRODUCTION

The control of Hamiltonian systems has attracted much
attention over the past 20 years. While a complete list of
references is too extensive to list here, we wish to briefly
review some of the topics studied in the past 20 years. Much
of this work has focused on controlling Hamiltonian systems
that are chaotic when the control is turned off �1–7�. There
are also examples of possible physical applications of this
work. For example in �8�, the results of �5� are used to find a
chaotic Earth-Moon transfer orbit which requires a smaller
velocity boost than a Hohmann transfer. The previous work
most relevant to the current paper, however, deals with non-
chaotic Hamiltonian systems. In �9�, Haberman and Ho study
a Hamiltonian system which is a nonchaotic nonlinear oscil-
lator. The phase space of this system contains two competing
centers separated by a saddle. Once a dissipative perturbation
is applied to the system, the centers become attractors. In �9�,
asymptotic methods are used to derive an analytic form for
the stable manifold of the saddle �the basin boundary be-
tween attractors�. Other topics in the control of Hamiltonian
systems include: controlling global stochasticity �10�, the
control of dissipative and Hamiltonian chaos �11�, control of
chaotic maps �12�, the control of Hamitonian systems con-
taining both chaotic and quasiperiodic regions of their phase
space �13�, and the controllability of twist maps �14�. There
has also been work done in understanding the control of
integrable and near-integrable systems �15–18�. Friedland
and Shagalov �27� have done some work dealing with excit-
ing N-phase solutions of the nonlinear Schrödinger equation
�NLS�, an integrable Hamiltonian system. In �27�, a simple
conservative control scheme is used to open islands around a
moving control target. In our work, we focus on the control
of finite-dimensional integrable Hamiltonian systems. The
controller uses dissipative and conservative terms to target an
exact solution of the uncontrolled system. Our long term
goal is to learn how to control nonlinear waves that are well-
modeled by integrable theories, hence we focus on the con-
trol of integrable Hamiltonian systems, rather than chaotic
ones.

In �19� we studied the problem of controlling two-
dimensional integrable Hamiltonian systems to one of their
exact solutions. The controller used to target the solution of
interest contained dissipative and conservative terms. The
controlled system is of the form:

ż = J � H�z� + ��R1 + �IJ��z0 − z� , �1�

where z=z�t� is a 2N-vector, H is the Hamiltonian, �R and �I

are constants, 1 is the 2N�2N identity matrix, and J is the
2N�2N block matrix:

J = �0 − 1

1 0
� . �2�

In J, the 0 and 1 are N�N block matrices. Further, z0�t� is a
solution of the uncontrolled dyanmics ��R=�I=0� which is
the target for control. The couplings �R and �I are, respec-
tively, dissipative and conservative control terms. Equation
�1� can be canonically transformed into

Ż = J�ZK�Z,t� − �RZ − �IJS0�t�Z + O�Z2� , �3�

where Z is a coordinate system that keeps the target solution
fixed at the origin. In this paper, we consider the case in
which the conservative coupling is zero.

In our previous work, we studied the case in which N
=1. We found that the dissipative term in Eq. �1� caused a
Takens-Bogdanov bifurcation �23,24� to occur at the control
target. The Takens-Bogdanov bifurcation implies that the
controlled system will be extremely sensitive to noise. We
then illustrated these results on a driven nonlinear
Schrödinger equation �NLS�, an integrable Hamiltonian sys-
tem whose solutions were restricted to plane waves �spatially
uniform solutions�. In this paper, we will expand upon our
earlier work to include four-dimensional systems. This time,
our sample system will be a four-dimensional integrable
Hamiltonian system based upon the NLS �20�. This system
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will have some of the properties of the NLS, such as plane
wave instability. We will find that a Takens-Bogdanov bifur-
cation occurs in this new system as well.

The phase space of an integrable Hamiltonian system is
foliated by tori. Our target orbit lies on one such torus. By a
canonical transformation, we can cast Hamilton’s equations
into action angle form and bring the target orbit to rest at the
origin. Linearizing Hamilton’s equation about the fixed point
at the origin gives

�
�̇1

İ1

�̇2

İ2

� =�
0 �1 0 0

0 0 0 0

0 0 0 �2

0 0 0 0
��

�1

I1

�2

I2

� +�
g1�I�

0

g2�I�
0
� . �4�

Notice that the linear term is in Jordan block form and non-
diagonalizable. Therefore it is generic that Takens-Bogdanov
bifurcations will occur when controlling such systems. This
paper provides further evidence for the importance of this
assertion by examining an important special case: a low-
mode truncation of the nonlinear Schrödinger equation that
preserves the integrability of the original PDE. The analysis
of the controlled dynamics of Eq. �4� is difficult due to the
large number of parameters which can appear when control
is applied. From Eq. �3� it is clear that the �R terms will
appear on the diagonal of Eq. �4�. However, the placement of
the conservative terms depends on the problem at hand. This
makes a general analysis difficult. In this paper we will set
the conservative term, �I, equal to zero and study the effects
of a purely dissipative control term on an integrable Hamil-
tonian system.

The work presented in this paper is a nontrivial extension
of the work presented in �19�. The possibility of multiple
Takens-Bogdanov bifurcations increases the difficulty of
analyzing the controllability of the system. In fact, in one of
the examples below, a Takens-Bogdanov bifurcation will oc-
cur in two different subspaces. This type of behavior was not
previously dealt with, but here we show that a careful appli-
cation of our algorithm will still yield fruitful results. Often,
the Takens-Bogdanov nature of these systems will not be
immediately obvious in the coordinates used to describe the
system, thus obscuring the degenerate nature of the system in
the physical coordinates. Using the action-angle coordinates
in �19� greatly simplified the analysis of the two-dimensional
control problem and made the degeneracy obvious. In many
real systems, the action-angle variables are not available. In
this paper, the action-angle coordinates will not be available
for the analysis because, although they exist, they are not
known in closed form. We will still perform the normal form
analysis similar to that done before, however, a blind appli-
cation of the normal form can lead to spurious roots. Further,
since we do not know the action-angle coordinates, we will
need to alter the method used in our earlier work. We will
use the information obtained from the normal form analysis
to estimate scalings in the physical coordinates. We will see
that we can still obtain useful information about the control-
lability of the system when such an analysis is done.

A long term goal of our work is to develop controllers for
systems whose dynamics reduce to the NLS in some limit. In
particular, we are interested in the suppression of instabilities
inherent in these types of systems. Such instabilities are rep-
resented by the theta-function solutions of the NLS presented
in �21�. Effective control of the NLS to its theta-function
solutions will give insight into the suppression of such insta-
bilities. By studying the control of related higher dimen-
sional systems �i.e., based upon the NLS� which retain the
properties of the NLS, we hope to obtain some insight into
the control of the NLS itself, which is an infinite dimensional
problem.

II. THE UNCONTROLLED DYNAMICS

The work in this section parallels the development in �20�.
We begin with the NLS, iwt+wzz+2	w	2w=0, which is an
infinite-dimensional integrable Hamiltonian system. Next,
we transform to a coordinate system which places the plane
wave solution, w�z , t�=a exp�2ia2t�, at rest �but not at the
origin�. This transformation is canonical �22�. By setting
w�z , t�=q�z , t�exp�2ia2t� and inserting it into the NLS, we
obtain

iqt + qzz + 2�	q	2 − a2�q = 0. �5�

Next, we consider the two-mode truncation from �20�,
q�z , t�=c�t�+b�t�cos�kz�, where c�t�, the carrier, and b�t�, the
sideband, are complex. We insert this into Eq. �5� to obtain

ċ = 2i�	c	2 +
1

2
	b	2 − a2�c + i�c*b + cb*�b ,

ḃ = 2i
	c	2 +
3

4
	b	2 − �1

2
k2 + a2��b + 2i�bc* + cb*�c , �6�

which is a two-dimensional system of complex variables
�four-dimensional real system�. It it is important to note that
the derivation of Eq. �6� from Eq. �5� requires that we drop
terms in cos�3kz� and higher harmonics. Hence this is not a
solution of the NLS but a new dynamical system in its own
right that was inspired by the NLS and exhibits some of its
interesting features. The system �6� admits the two first inte-
grals �see �20� and references therein�:

I = 	c	2 +
1

2
	b	2,

H =
1

2
	c	4 +

3

2
	b	2	c	2 +

1

4
	b	4 − �1

2
k2 + a2�	b	2 − 2a2	c	2

+
1

2
�b2c*2 + c2b*2� . �7�

The first integrals, I and H, are independent and are in invo-
lution and therefore the system �6� is a four-dimensional in-
tegrable Hamiltonian system with phase space corrdinates,
�cI ,cR ,bI ,bR�, and with Poisson bracket:
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�f ,g =
�f

�cI

�g

�cR
−

�f

�cR

�g

�cI
+

�f

�bI

�g

�bR
−

�f

�bR

�g

�bI
, �8�

where f ,g are functions of cI, cR, bI, and bR.
For our work, we use the following set of variables:

c�t� = x�t� + iy�t� ,

b�t� = u�t� + iv�t� . �9�

In these variables, Eq. �6� becomes

ẏ = 2x�x2 + y2 +
1

2
�u2 + v2� − a2� + 2u�xu + yv� ,

ẋ = − 2y�x2 + y2 +
1

2
�u2 + v2� − a2� − 2v�xu + yv� ,

v̇ = 2u
x2 + y2 +
3

4
�u2 + v2� − �1

2
k2 + a2�� + 4x�xu + yv� ,

u̇ = − 2v
x2 + y2 +
3

4
�u2 + v2� − �1

2
k2 + a2�� − 4y�xu + yv� .

�10�

One important property, which is of interest to us, is that
plane wave solutions are modulationally unstable when k
�2a �21�. This will have direct consequences for controlling
the NLS to the plane wave solution, q0=a. The modulational
instability was not a concern in the two-dimensional �plane
wave� case since the system did not allow for spatially non-
uniform solutions of the NLS. The modulational instability is
retained in the truncated system �10�, as will be shown be-
low. The instability is associated with a saddle structure in
the phase space of the uncontrolled system.

There are several special solutions of Eq. �10� presented
in �20�. We are interested in using three of them as control
targets. They are listed in Table I ��� �0,2���. Note that C1
is the plane wave target from �19�. As we will see, each of
these solutions will be interesting control targets and will
demonstrate a variety of possible behaviors that the con-
trolled system can exhibit.

III. ANALYSIS OF THE CONTROLLED DYNAMICS

In this section, we will present the problem of controlling
Eq. �10� to the solutions presented above. In this paper, we
exploit the fact that the normal form analysis does not re-

quire knowledge of the action-angle coordinates. We know
that Eq. �10� is integrable, and therefore from Eq. �4�, we
expect the Takens-Bogdanov bifurcation to occur. The analy-
sis will be done as follows.

�1� Perform a coordinate transformation which places the
target orbit at rest at the origin. Here we will truncate the
dynamics at quadratic order.

�2� Next, we perform a linear coordinate transformation
which places the linear dynamics from Step 1 into Jordan
canonical form. We then identify the quadratic terms which
are resonant to the linear dynamics by computing the normal
form �25� of the system to quadratic order.

�3� Use the equations from step 2 to find the scalings �in
�R� for the fixed points near the target, in the normal form
coordinates.

�4� Using the scalings found in step 3, we can go back to
the original equations and compute the location of those
fixed points. This is a new step in the analysis. The reason
for this new step will be explained below.

�5� We identify which fixed points are saddles that bifur-
cate with the target as �R↓0.

�6� We then find the angle, �, between the eigenvectors of
the saddle which are becoming degenerate �parallel� when
�R↓0. This will involve one pair of stable and unstable
eigenvectors becoming degenerate.

�7� Finally, we use the triangle relation, first demonstrated
in �23�, to estimate the noise threshold for instability denoted
	c.

Notice that we will not be extracting 	c directly from our
normal form as done in our earlier work. The normal form
can provide spurious roots when truncated to second order.
We will demonstrate this on the Circle 1 problem below. The
occurrence of spurious roots is one of the major reasons for
the modification of the analysis and did not occur in our
previous work on the two-dimensional problem.

Our controlled dynamics will be

iqt + qzz + 2�	q	2 − a2�q = i�R�q0 − q� , �11�

where q0 is a solution to the uncontrolled ��R=0� dynamics,
either Circle 1, 2, or 3.

A. Targetting Circle 1: C1=„y ,x ,v ,u…= „0,a ,0 ,0…

In this section we focus on the problem of controlling the
truncated NLS, Eq. �10�, to Circle 1, which is the plane wave
solution from the two-dimensional problem presented in
�19�. The four-dimensional model includes more of the phys-
ics of the NLS �i.e., the plane wave instability� and therefore
makes it much more relevant to understanding the control of
the NLS to a plane wave state.

TABLE I. The solutions of Eq. �10� in �c ,b� coordinates.

Circle �c ,b� �y ,x ,v ,u�

C1 �aei� ,0� �0,a ,0 ,0�

C2 (0,ei�� 4
3

�a2+ 1
2k2�) (0,0 ,0 ,� 4

3
�a2+ 1

2k2�)

C3 (ei���k2+a2� /5 ,ei��2�4a2−k2� /15) (0,��k2+a2� /5 ,0 ,�2�4a2−k2� /15)
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We begin by substituting the two-mode truncation from
above into Eq. �11�, with q0=a. Then we follow the proce-
dure used to obtain Eq. �10�:

ẏ = − �Ry + 2x�x2 + y2 +
1

2
�u2 + v2� − a2� + 2u�xu + yv� ,

ẋ = �R�a − x� − 2y�x2 + y2 +
1

2
�u2 + v2� − a2� − 2v�xu + yv� ,

v̇ = − �Rv + 2u
x2 + y2 +
3

4
�u2 + v2� − �1

2
k2 + a2��

+ 4x�xu + yv� ,

u̇ = − �Ru − 2v
x2 + y2 +
3

4
�u2 + v2� − �1

2
k2 + a2��

− 4y�xu + yv� . �12�

The target is located at �y=0, x=a, v=0, u=0�.
Next, we shift the target to the origin and keep only the

linear and quadratic terms �e.g., x=a+X ,X
1�:

�
Ẏ

Ẋ

V̇

U̇
� =�

− �R 4a2 0 0

0 − �R 0 0

0 0 − �R 4a2 − k2

0 0 k2 − �R

��
Y

X

V

U
� + f2�Y�

+ ¯ , �13�

where

f2�Y� =�2a�Y2 +
3U2

2
+

V2

2
+ 3X2�

− 4aYX − 2aVU

4a�3XU + YV�
− 4aVX − 4aYU

� . �14�

The eigenvalues of the linear matrix give the stability for the
target. The eigenvalues of the matrix in Eq. �13� are −�R ,
−�R ,−�R±k�4a2−k2. The target is a degenerate node in the
xy plane. The target becomes unstable when k�2a, this is
how the NLS’s plane wave instability appears in the control
problem. Further, the target is also unstable when �R

�k�4a2−k2. The term k�4a2−k2 gives the linear growth rate
for modulational instabilities, hence this shows that the
damping rate of the control must be greater than the linear
growth rate of the instability. The problem is split in two
different cases: one where the plane waves are modulation-
ally stable and the other where they are not.

1. The case in which plane waves are modulationally stable

When k�2a, the target is an attractor. Therefore we can
consider computing a 	c for it. The quantity, 	c, is the small-
est perturbation that drives the system unstable �which we
call the “distance” to the basin boundary�. We do this by
continuing with the steps outlined in Sec. III.

Next, we calculate the normal form of Eq. �13� to second
order about the target when �R=0. The details of this trans-
formation are not important �the interested reader is referred
to �26��, however, the relationship between the coordinates
�Y ,X ,V ,U� and the normal form coordinates �x1 ,x2 ,x3 ,x4� is
important when finding fixed points of Eq. �12�. The coordi-
nates Y and X are proportional to x1 and x2, respectively;
while the coordinates U and V are linear combinations of x3
and x4. The normal form of Eq. �13� about the target is

�
ẋ1

ẋ2

ẋ3

ẋ4

� =�
− �R 1 0 0

0 − �R 0 0

0 0 − �R − b 0

0 0 0 − �R + b
��

x1

x2

x3

x4

�
+�

2ax1
2

− 4ax1x2

0

0
� , �15�

where b=k�4a2−k2. The dynamics, Eq. �15�, consist of two
noninteracting subspaces, a “plane wave plane” �x1x2-plane�
and a “sideband plane” �x3x4-plane�. We see that trajectories
which start off the x1x2-plane will settle onto it because k
�2a. Physically, this implies that any spatial modulation of
a plane wave will settle down to a plane wave state. This is
also a property of the NLS. The resonant terms in Eq. �15�
were those identified by performing a normal form analysis
�see, for example, �25�, for a discussion of normal form
analysis�.

Earlier, we mentioned that the normal form can give spu-
rious roots. To demonstrate this, we will compare the dynam-
ics on the plane-wave plane of the current problem �15� with
the two-dimensional problem from �19�. Both problems de-
scribe the exact same physical situation, but because differ-
ent coordinates are used to describe each problem �action-
angle coordinates are used in the two-dimensional problem�
they each have different quadratic terms in their dynamics.
The fact that we truncate the normal form to quadratic order
implies that the fixed points that are found depend on what
terms appear in F2. We begin by looking at the dynamics of
the two-dimensional problem:

�ẋ1

ẋ2
� = �− �R 2

0 − �R
��x1

x2
� + � 0

− �Ra2x1
2 � . �16�

Other than the target, which is at the origin, the fixed points
of Eq. �16� are

x1 =
�R

2a
, x2 = −

�R
2

4a2 . �17�

The above fixed point corresponds to a saddle. Next, we look
at the plane-wave dynamics of Eq. �15�:
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�ẋ1

ẋ2
� = �− �R 1

0 − �R
��x1

x2
� + � 2ax1

2

− 4ax1x2
� . �18�

The fixed points of Eq. �18�, other than the target, are

x1 =
�R

2a
, x2 = 0 �19�

and

x1 = −
�R

4a
, x2 = −

3�R
2

8a
. �20�

If one inserts Eq. �19� into Eq. �15� �with x3=x4=0� one will
find that Eq. �19� behaves like a saddle point. Hence it could
be a point of interest �a saddle point that bifurcates with the
target as �R↓0�. However, no such point appears in the two-
dimensional system and both sets of equations describe the
same system. This leaves us with the question of whether or
not Eq. �19� is a new fixed point of the four-dimensional
system, or is it simply a spurious root produced by a low-
order truncation of the normal form.

The fixed points �19� and �20� are also fixed points of Eq.
�15� when x3=x4=0. We can also see that each of these fixed
points come in the form: x1=�R�1, x2=�R

2�2, and x3=x4=0.
Using the normal form transformation, this translates to
looking for fixed points which lie in the XY-plane �U=V
=0� that scale like �R in the Y-direction and �R

2 in the
X-direction. Note that the origin is the target. We will insert
these scalings into the original equations, �12�, to find the
location of the fixed points. Then, our coordinate tranforma-
tion becomes x=a+�R

2�2, y=�R�1, and u=v=0. We plug
these scalings into Eq. �12� and solve for �1 and �2 to find
the location of the fixed point. We find:

yS = −
�R

2a
+ O��R

2� ,

xS = a −
�R

2

4a3 + O��R
3� ,

vS = 0,

uS = 0, �21�

as the position of the only fixed point near the target to
leading order in �R. Hence we see that Eq. �20� is, indeed, a
spurious root. While verification of the nature of Eq. �20� is
simple in this case, in later cases �such as Circle 3, below�,
solution of the original dynamics may not be possible. Next,
we need to find the linear term of the dynamics of Eq. �12�
linearized about the fixed point. The linearized dynamics will
give us the nature of the fixed point. Linearizing Eq. �12�
about the fixed point �using, for example, x=xS+X ,X
1�
gives

�
Ẏ

Ẋ

V̇

U̇
� =�

− 3�R 4a2 −
5�R

2

2a2 0 0

−
�R

2

2a2 �R 0 0

0 0 − 3�R 4a2 − k2 −
5�R

2

2a2

0 0 k2 −
�R

2

2a2 �R

�
��

Y

X

V

U
� + ¯ , �22�

where we ignore terms O��R
3� and higher, as well as terms

O�X2� and higher. To leading order in �R, the eigenvalues of
the matrix in Eq. �22� are

�1 = �− 1 + �2��R + O��R
3� ,

�2 = �− 1 − �2��R + O��R
3� ,

�3 =
k

a2
�4a2 − k2 −

�R

2a2 + O��R
2� ,

�4 = −
k

a2
�4a2 − k2 −

�R

2a2 + O��R
2� . �23�

Likewise, the eigenvectors of Eq. �22� to leading order in �R
are

v1 = �1,
2 + �2

2a2 �R,0,0� ,

v2 = �1,
2 − �2

2a2 �R,0,0� ,

v3 = �0,0,1,k�4a2 − k2 −
2�R

k2 � ,

v4 = �0,0,1,− k�4a2 − k2 −
2�R

k2 � , �24�

where like subscripts denote eigenvalue-eigenvector pairs.
Hence we see that the point is a stable spiral �in the �3,4�,
i.e., u and v, directions� and a degenerate saddle �in the �1,2�-
plane, i.e., xy-plane�. Since we know the location of the fixed
point and its stability, we can now visualize parts of the
phase space of Eq. �12� near the target. Since the target and
the saddle lie solely in the xy-plane, we will look at only this
plane in the phase space as is illustrated in Fig. 1. In Fig. 1
we see that in this plane, the target, O, has a teardrop shaped
basin of attraction in this plane, a hallmark of a Takens-
Bogdanov bifurcation. The saddle point, S, given by Eq. �21�
lies near the target. One piece of the saddle’s unstable mani-

CONTROL OF MULTIDIMENSIONAL INTEGRABLE… PHYSICAL REVIEW E 72, 036213 �2005�

036213-5



fold �Wu� goes to the target while the other piece goes to a
spiral �not shown� in the xy-plane. The stable spiral repre-
sents a low-amplitude, O��R�, plane wave.

We see that the two eigenvectors in the xy-plane are be-
coming degenerate �parallel� as �R↓0. Following our algo-
rithm, we need to find the angle, �, between those two eigen-
vectors �see Fig. 2�, using the dot product of these two
vectors. Once � is found, we can use the triangle relation �see
Fig. 2� to find 	c:

	c � 	yS�	 =
�R

2�2

4a3 . �25�

The scaling for the four-dimensional system when we target
Circle 1 is the same as that in the two-dimensional problem.

In �19�, we discussed how to improve our estimate �25� as
well as compute the error terms by including more terms in

the Taylor approximation of the stable manifold of the
saddle. Note that the triangle relation gives an approximation
of the linear term of the stable manifold’s �Ws� Taylor series.
In this problem, the stable manifold is three-dimensional �see
the eigenvalue structure of the saddle�. However, we are for-
tunate that the dynamics of the saddle �and the node� are
normal and attracting in directions off of the xy-plane. There-
fore we can reduce this problem to finding the one-
dimensional curve of the stable manifold in the xy-plane.
Finding an approximate equation for the stable manifold of
the saddle is the same as finding an approximate equation for
x�y� near the saddle point. Therefore we are interested in
solving

F�y ;x� �
dx

dy
=

�R�a − x� − 2y�x2 + y2 − a2�
− �Ry + 2x�x2 + y2 − a2�

�26�

for x�y�. The stable manifold will be the curve, x�y�, which
passes through the saddle point in the direction of the sad-
dle’s stable eigenvector. We approximate the stable manifold
in this plane with a quadratic polynomial, x�y�. The algebra
here is straightforward and is presented in �26�. By Fig. 1,
we can estimate the correction to Eq. �25� to be 	c�a
−x�y=0�,

	c =
9

32a3�R
2 + O��R

4� . �27�

Figure 3 verifies this scaling. In Fig. 3, we have the rela-
tive error between Eqs. �25� and �27�. Here, relative error is
the absolute value of the difference between the “true” value
of 	c �found numerically� and those values of 	c predicted
by Eqs. �25� and �27�. We see that the estimate of 	c made by
the triangle relation �triangles� is not as good as that made by
the quadratic approximation �squares�, as is expected. Fur-
ther, we see that the quadratic approximation of the stable
manifold converges a little quicker than the triangle relation.
It is important to point out that the much easier computation
of the triangle relation gives the correct scaling for 	c in both
�R and a ��R

2 /a3�. The true value of 	c is obtained by inte-
grating Eq. �12� starting at the saddle in the direction of the

FIG. 1. The xy-plane in the phase space of Eq. �12� near the
target.

FIG. 2. An illustration of the xy-plane zoomed-in near the
target.

FIG. 3. The relative error of the triangle relation �triangle� and
the polynomial approximation �squares�.

C. W. KULP AND E. R. TRACY PHYSICAL REVIEW E 72, 036213 �2005�

036213-6



stable manifold backwards in time. The intersection of the
stable manifold and the x-axis is approximately 	c.

2. The case in which plane waves are modulationally unstable
„k�2a…

As can be seen from the eigenvalue structure of Eq. �13�,
if k�2a then the Circle 1 target is unstable if �R

�k�4a2−k2. This provides a threshold for control, the time
scale for relaxation to the control target �O�1/�R�� must be
faster than the exponential growth rate of the instability
�k�4a2−k2�. When �R is below the threshold �k�4a2−k2�
then the system cannot be controlled to the target. When
attempting to control the full PDE �5�, a similar threshold
will arise. In fact, when �R is below the threshold, two other
attracting fixed points exist which we call A+ and A−. Alge-
braic expressions for the locations of A+ and A− are not easy
to find. In the two-dimensional problem, these two attractors
never appear as they exist off of the plane wave plane. Figure
4 shows the profile of 	q	 vs. z at each one of these attractors.
As �R→k�4a2−k2, A+ and A− collide at the point, �y=0, x
=a, v=0, u=0�, and form the target. From Fig. 4 one can see
that the “addition” of A+ and A− yields a plane wave �spa-
tially uniform wave�. For �R�k�4a2−k2, the target is the
sole attracting fixed point.

3. Summary of the Circle 1 problem

When k�2a, plane waves are modulationally stable and
the interesting dynamics lie on the xy-plane. The noise
threshold, 	c, has similar scalings in �R and a as the two-
dimensional problem. The analysis of the four-dimensional
problem becomes more difficult than the two-dimensional
problem due to the appearance of spurious roots in the nor-
mal form. However, this is fairly easily handled by using the
scaling of the fixed points found from Eq. �15� to find the
fixed points in the original dynamics �12�. This step will not
always be simple �see the Circle 3 problem below�. Another
new issue we must attend to in the four-dimensional problem
deals with the modulational instability of plane waves. When
�R is less than the linear growth rate the target is no longer
viable. New attractors appear off of the plane wave plane,
but bifurcate to form the control target as �R→k�4a2−k2.
This provides one more necessary condition for the Circle 1
solution to be a viable control target.

B. Targeting Circle 2: C2= „y ,x ,v ,u…=(0 ,0 ,0 ,� 4
3
„a2+ 1

2k2
…)

In this section, we will overview the results of the Circle
2 problem. For the algebraic details, the interested reader is
referred to �26�. Similar to the Circle 1 problem, the Circle 2
problem can be broken up into two cases, one in which k
�a and one in which k=a. The analysis of the first case
�when k�a� is similar to that of the Circle 1 problem, except
that in this case the Takens-Bogdanov bifurcation occurs in
the sideband �uv� plane. In the end, we find that 	c�O��R

2�.
The more interesting case occurs when k=a. In this case,

the normal form about the target is

�
ẋ1

ẋ2

ẋ3

ẋ4

� =�
− �R 1 0 0

0 − �R 0 0

0 0 − �R 1

0 0 0 − �R

��
x1

x2

x3

x4

� + F2�x� ,

�28�

where x1, x2, x3, and x4 are proportional to V, U, Y, and X,
respectively, and F2 contains only quadratic terms. Note that
the capitalized coordinates are the ones used to linearize the
Circle 2 dynamics about the target �similar to the Circle 1
problem�. It is clear that we have two Takens-Bogdanov bi-
furcations occuring; one in the plane wave plane, and the
other in the sideband plane. This is different from the previ-
ous cases. We need to be cautious and determine the nature
of the bifurcations in each plane. We are interested only in
the case where a stable and an unstable pair of eigenvectors
become degenerate as �R↓0. Like the Circle 1 problem, Eq.
�28� produces spurious roots. Using the scalings for the fixed
points �obtained by Eq. �28��, we find that there is only one
fixed point near the target. It turns out that this fixed point
has one unstable direction and three stable ones. In the plane
wave plane, two of the stable eigenvectors become degener-
ate in a Takens-Bogdanov bifurcation as �R↓0. Hence this
bifurcation is of no interest to us in terms of control. The
other Takens-Bogdanov bifurcation, occuring in the sideband
plane, has one stable and one unstable eigenvector becoming
degenerate. This is the bifurcation of interest. By continuing
the analysis on the sideband plane, we find that 	c�O��R

2�.

C. Targeting Circle 3: C3=„y ,x ,v ,u…=(0 ,�„k2+a2
… /5 ,0 ,

�2„4a2−k2
… /15)

In this section, we will overview the results of the Circle
3 problem. For a detailed algebraic analysis, the interested
reader is referred to �26�. In this problem, the Takens-
Bogdanov bifurcation is not obvious in the physical coordi-
nates. This becomes clear when we transform to coordinates
that place the linear dynamics in Jordan canonical form �i.e.,
“normal form coordinates”�. The bifurcation still occurs on a
plane, however, the physical interpretation of the plane is not
as simple as in the other two problems. This is because the
solution does not lie solely on the xy- or uv-plane. The nor-
mal form of the dynamics linearized about the target gives
many spurious roots. However, in this problem we cannot
find the true roots of the Circle 3 dynamics analytically �i.e.,
the roots of the controlled dynamics in the physical coordi-

FIG. 4. A 	q	 vs z profile of the attractors A+ and A−.
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nates�, even with the insight into the root’s scaling given by
the normal form analysis. However, we can still use insights
obtained from the other two problems and numerical meth-
ods to verify the presence of the second fixed point and its
saddle nature, then proceed to estimate 	c as before. Such a
blending of numerical and analytical techniques will be re-
quired as the dimensionality of our control problems in-
crease. In the end, we find that for the Circle 3 problem,
	c�O��R

2�.

IV. CONCLUSIONS

When attempting to control a high-dimensional integrable
Hamiltonian system to one of its solutions, a high-
dimensional Takens-Bogdanov bifurcation can occur. In most
of our NLS examples, only a low-dimensional Takens-
Bogdanov bifurcation occurred. This is because the solutions
we are targeting have a saddle structure to them unlike Eq.
�4� which assumes a generic solution. In each of the cases
above, the wave number, k, determines whether the target
solution is a saddle or a node. This physically makes sense
for the NLS since the wave number determines whether or
not plane waves are modulationally stable. When targeting
Circles 1 and 2, we found that the Takens-Bogdanov bifur-
cation occurred either in the xy-plane �for Circle 1� or the
uv-plane �for Circle 2�. This is due to the fact that the target
lies solely in its respective plane. In these problems, the
Takens-Bogdanov bifurcation is obvious in the physical
�y ,x ,v ,u� coordinates. The Takens-Bogdanov bifurcation
that occured in the Circle 3 problem did not occur in either
of those two planes. This is because the Circle 3 target does

not lie on either plane alone. However, the presence of the
Takens-Bogdanov bifurcation is clear when our coordinates
are chosen such that the linear dynamics are in Jordan ca-
nonical form.

Finding the noise thresholds for the above systems
involved a nontrivial extension of the algorithm developed
in �19�. After determining the stability conditions for each
target, we had to identify the nature of the Takens-Bogdanov
bifurcation. When k=a for the Circle 2 target, we had
two Takens-Bogdanov bifurcations occurring. The Takens-
Bogdanov bifurcation of interest needed to be identified by
studying the stability of the saddle point. Also, obtaining the
location of the saddle point was not as straightforward as in
the two-dimensional problem. We found that the normal
form gave spurious roots due to the truncation at quadratic
order. While some of the roots were spurious, the scalings of
the roots could be used in the original equations to find the
position of the actual fixed points. In the Circle 3 problem,
this could not be done analytically and therefore numerical
methods needed to be used. We expect that as the dimension-
ality of the system increases, we will need to rely more on
numerical techniques. In each of the above cases, a blind
application of the algorithm from �19� could have produced
erroneous results and therefore the algorithm needed to be
modified.
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